

# YTC3008 变压器损耗参数测试仪

# 用户操作手册

### 尊敬的顾客

感谢您购买本公司 YTC3008 变压器损耗参数测试仪。在您初次使用该产品前,请您详细地阅读本使 用说明书,将可帮助您熟练地使用本仪器。

> 我们的宗旨是不断地改进和完善公司的产品,因此您所使用的产品可能与使 用说明书有少许的差别。如果有改动的话,我们会用附页方式告知,敬请谅 解!您有不清楚之处,请与公司售后服务部联络,我们定会满足您的要求。



由于输入输出端子、测试柱等均有可能带电压,您在插拔测试线、电源插座 时,会产生电火花,小心电击,避免触电危险,注意人身安全!



#### 慎重保证

本公司生产的产品,在发货之日起三个月内,如产品出现缺陷,实行包换。一年内如产品出现缺陷, 实行免费维修。一年以上如产品出现缺陷,实行有偿终身维修。

#### ◆ 安全要求

请阅读下列安全注意事项,以免人身伤害,并防止本产品或与其相连接的任何其它产品受到损坏。 为了避免可能发生的危险,本产品只可在规定的范围内使用。

只有合格的技术人员才可执行维修。

#### —防止火灾或人身伤害

使用适当的电源线。只可使用本产品专用、并且符合本产品规格的电源线。

正确地连接和断开。当测试导线与带电端子连接时,请勿随意连接或断开测试导线。

产品接地。本产品除通过电源线接地导线接地外,产品外壳的接地柱必须接地。为了防止电击,接 地导体必须与地面相连。在与本产品输入或输出终端连接前,应确保本产品已正确接地。

**注意所有终端的额定值。**为了防止火灾或电击危险,请注意本产品的所有额定值和标记。在对本 产品进行连接之前,请阅读本产品使用说明书,以便进一步了解有关额定值的信息。

**请勿在无仪器盖板时操作。**如盖板或面板已卸下,请勿操作本产品。

使用适当的保险丝。只可使用符合本产品规定类型和额定值的保险丝。

·避免接触裸露电路和带电金属。产品有电时,请勿触摸裸露的接点和部位。

在有可疑的故障时,请勿操作。如怀疑本产品有损坏,请本公司维修人员进行检查,切勿继续 操作。

请勿在潮湿环境下操作。

请勿在易爆环境中操作。

保持产品表面清洁和干燥。

#### -安全术语

警告:警告字句指出可能造成人身伤亡的状况或做法。

**小心**:小心字句指出可能造成本产品或其它财产损坏的状况或做法。

录 目

| 目        | 录IV             |
|----------|-----------------|
|          |                 |
| —,       | 功能特性5           |
| <u> </u> | 主要技术指标5         |
| 1,       | 环境条件5           |
| 2,       | 测量范围5           |
| 3、       | 测试精度5           |
| 4、       | 绝缘强度            |
| Ξ,       | 面板说明6           |
| 四、       | 操作说明6           |
| 1,       | 键盘使用方法          |
| 2,       | 主界面介绍           |
| 3、       | 试品参数的管理操作7      |
| 4、       | 空载试验过程介绍9       |
| 5、       | 负载试验过程介绍11      |
| 6,       | 谐波试验过程介绍        |
| 7、       | 系统设置说明14        |
| 附        | 录15             |
| 1,       | 试验接线图           |
| 2,       | 仪器检定方法          |
| 3、       | 显示结果说明及理论计算公式17 |
| 4、       | 常见故障排除          |

#### 一、功能特性

- 1、 可测量变压器的空载电流、空载损耗、短路电压、短路(负载)损耗。
- 2、 可进行谐波试验,分析至 31 次谐波。
- 3、 仪器内部自动进行量程切换,允许测量电压、电流范围宽,接线简单。
- 4、 做三相变压器的空载、负载试验时,仪器能自动判断接线是否正确,并显示三相电压、电流的向量图。
- 5、 单机可以完成 1000KVA 以下的配电变压器全电流下的负载实验的测量;在三分之一 额定电流下可完成 3150KVA 以下的配电变压器的负载试验的测量(在三分之一的额 定电流下,仪器可换算到额定电流下的负载损耗参数)。
- 6、 所有测试结果均自动进行相关校正。仪器可自动进行诸如:波形校正、温度校正、 非额定电压校正、非额定电流校正等多种校正,使测试结果准确度更高。
- 7、 320x240 大屏幕、高亮度的液晶显示,全汉字菜单及操作提示实现友好的人机对话, 触摸按键使操作更简便,宽温液晶带亮度调节,可适应冬夏各季。
- 8、 仪器可以由用户预设 40 组被试品参数,而且这些参数可以根据需要随时删除和增加,使用非常方便。
- 9、 自带实时电子钟,自动记录试验的日期、时间利于实验结果的保存、管理。
- 10、 面板式热敏打印机,可现场快速打印试验结果。
- 11、 数据(试品设置、测量结果、测试时间等)具备掉电存贮及浏览功能,可以存储 500 组实验结果,能与计算机联机传送数据。
- 12、 允许外接电压互感器和电流互感器进行扩展量程测量,可测量任意参数的被试品。

#### 二、主要技术指标

#### 1、环境条件

温度: −5°C~40°C 相对湿度: <95%(25°C) 海拔高度: <2500m 外界干扰: 无特强震动、无特强电磁场 供电电源: 160VAC~280VAC, 45Hz~55Hz

#### 2、测量范围

电压: 10~650V 电流: 0.5~60A 频率: 45Hz~65Hz

#### 3、测试精度

电压、电流、频率:测量精度 0.2 级 功率:测量误差 < ±0.5% (CosΦ >0.1), ±1.0% (0.02<CosΦ <0.1)

#### 4、绝缘强度

- 1) 电压、电流输入端对机壳的绝缘电阻≥100MΩ。
- 2) 工作电源输入端对外壳之间承受工频 2KV (有效值),历时1分钟实验。

#### 三、面板说明

| 510            |   |      |       | <u>о</u> —ы— | 0 |
|----------------|---|------|-------|--------------|---|
| 6345           |   | 0.4. | 0 w   |              | 0 |
|                | 6 |      | 0.004 | 115.181E     |   |
| 4.803          |   |      |       |              |   |
| 0<br>41,81,81% |   |      |       |              | J |

上面一排从左至右为:

接地柱、电源插座、打印机、电压测量端子、电流输入端子、电流输出端子; 下面一排从左至右为:

通信口、电源开关、液晶屏、数字键盘;

#### 四、操作说明

#### 1、键盘使用方法

"OK"键选择当前的输入,"取消"可以消除刚才的错误输入,"↑""↓""←""→"则可以方便的实现光标的移动。"切换"键为备用键。键盘的下方为 0~9 的数据键,在数据输入时,通过这些数字键可以方便的输入数据。

#### 2、主界面介绍

主界面如下图所示,由8个模块组成。

图 3 空负载测试仪开机主界面



- 1) 空载试验:在该菜单中可以测定单相变压器、三相变压器的空载损耗。
- 2) 负载试验:在该菜单中可以测定单相变压器、三相变压器的负载损耗。
- 3) 谐波试验:对单相或三相电压、电流进行谐波分析试验。
- 4) 试品参数:对预设的变压器参数进行修改、增加、删除等操作。
- 5) 数据浏览:对存储的数据进行浏览,删除等管理。
- 6) 系统设置:设置当前的系统时间、系统参数等。
- 7) 系统帮助:在该项中可以查看各种试验的接线图。
- 8) 厂家设置: 该功能为厂家生产调试用。

#### 3、试品参数的管理操作

 在主界面中,通过键盘的方向键使光标移动到试品参数菜单,然后按 OK 键,进入试品 参数的管理操作选择界面如下:



#### 图 4 试品参数管理界面

2) 在上面的界面中选择增加参数,出现下面的增加试品参数页面:

| 增加参数 | 数       | 编   | 号 S <u>0900315</u> |
|------|---------|-----|--------------------|
| UN1  | 10. OKV | IN1 | 18. 186A           |
| UN2  | 400V    | IN2 | 454.7A             |
| PT1  | 1.000   | CT1 | 1.000              |
| PT2  | 1.000   | CT2 | 1.000              |
| T1   | 10°C    | T2  | 75℃                |
| R1   | 2.849 Ω | R2  | 4.178m $\Omega$    |
| TO   | 10℃     |     |                    |
|      | 确定      | 取消  |                    |
| 高压侧额 | 反电压     |     |                    |

#### 图 5 增加试品参数页面

上图中,编号一栏为变压器的编号,编号的长度为7位,前两位代表变压器类型,后五 位代表变压器容量(运行输入的最大容量值为 63000),单位为 KVA,如变压器类型为 S9,容量为 315KVA,则其编号一栏应输入:0900315。

数据的输入方法如下(以 Un1 为例,输入值为 35.00):使用方向键把光标移动到 Un1 后的数据输入栏中,通过数字键盘直接输入 35.00,输入完成后按 OK 键即可。注意在 光标停留在 Un1 后的输入栏时,屏幕最下方提示"高压侧额定电压"(屏幕最下方总是 提示当前光标输入栏的参数意义)。

3) 在图 4 中选择修改参数,出现下面的选择变压器编号页面:

| 选择变压器型               | 궽 <del>뮉</del> |          |  |
|----------------------|----------------|----------|--|
| S0900050<br>S0700400 | S1100100       | S0900315 |  |
|                      |                |          |  |
|                      |                |          |  |

#### 图 6 选择变压器编号页面

通过方向键选择预修改其参数的编号,然后按 OK 键进入试品参数修改页面,参数修改 页面与图 5 相同。

4) 在图 4 种选择删除参数,则出现图 6 的选择变压器编号页面,选定编号后,按 OK 键将 删除该编号的变压器参数配置。

#### 4、空载试验过程介绍

- 根据变压器类型参考后面对应的接线图进行正确接线,然后接通空负载测试仪的工作电源(便携式空负载测试仪出厂时内部接线为双表法测量方式)。
- 2) 在主界面中选择空载试验,则显示空载试验设置界面如下图:

| The second se |                |            |                |     |
|-----------------------------------------------------------------------------------------------------------------|----------------|------------|----------------|-----|
| 空载试验设置                                                                                                          | 型号容            | 量:         | <u>S 09003</u> | 315 |
|                                                                                                                 |                |            |                |     |
| 变压器类型                                                                                                           | O单相            | •          | 三相             |     |
| 测试方法                                                                                                            | ●双表法           | ŧ          |                |     |
| 低压侧额定电压                                                                                                         | <u>400. C</u>  | V          |                |     |
| 低压侧额定电流                                                                                                         | 454.7          | <u>A</u>   |                |     |
| 电压互感器变比                                                                                                         | i <u>1.000</u> | Ĺ          |                |     |
| 电流互感器变比                                                                                                         | ; <u>1.000</u> | <u>i</u> , |                |     |
| 开始试验                                                                                                            | 退出             | 试验         | ]              |     |

图 7 空载试验设置页面

该页面保存上次试验时的设置值,检查、修改该页面中的设置值使其与当前试验变压器一致。

注: 在我司某些版本的仪器中,为了简化外部的接线,仪器内部已经接成了双表法,此时该界面的测试方法不可选择。

3) 在图 7 中,光标选择"开始试验",按 OK 键进入如下的空载试验测试数据页面:

| NAB     |                           | AB   | i.             | CB   |         | CA     |
|---------|---------------------------|------|----------------|------|---------|--------|
| $\sim$  | U(V)                      | 23   | 8.68           | 237  | . 84    | 238.08 |
|         | Um(V)                     | 23   | 8.74           | 237  | . 57    | 237.83 |
| Б       | I (A)                     | 0.   | 6909           | 0.4  | 969     | 0.6706 |
| Uo(V)   | 238.2                     | 0    | Io(A           | )    | 0.6     | 5195   |
| Pab(KW) | 0.054                     | 4    | Pbc(           | (KW) | 0.1     | .581   |
| Ps(KW)  | 0.212                     | 25 d | d              | d    | -0.0007 | 0007   |
| Po(KW)  | о(KW) 0.840;<br>ОSΦ 0.655 |      | 3 Io%<br>F(Hz) |      | 0.1     | .803   |
| COSΦ    |                           |      |                |      | 49.     | 987    |

图 8 空载试验测试数据页面

| 双表法空载       | <u>试验</u>   |          | <u>09-02</u> | -09              | 10: | :13:36           | 3                |
|-------------|-------------|----------|--------------|------------------|-----|------------------|------------------|
| <b>∧</b> AB |             | AB       | ់្រាល់       | CB               |     | CA               |                  |
| $\geq$      | <u> </u>    | I)<br>23 | 項相/<br>8.74  | <b>1</b><br>237. | 57  | 238. (<br>237. 8 | ) <u>8</u><br>33 |
| ĊВ          | I (A)       | 0.       | 6909         | 0.49             | 969 | 0.670            | )6               |
| $U_{O}(V)$  | 238. 20     | )        | Io(A)        | )                | 0.6 | 195              | ]                |
| Pab(KW)     | 0.0544      | ł        | Pbc (I       | KW)              | 0.1 | 581              |                  |
| Ps(KW)      | 0.2125      | 5        | d            |                  | -0. | 0007             |                  |
| Po(KW)      | 0.8403      | }        | Io%          |                  | 0.1 | 803              |                  |
| COS 🔶       | XOS Φ 0.655 |          | $F(H_z)$     |                  | 49. | 987              |                  |
| 锁定          | 【】保存        |          | 打印           | ] [              | 退出  |                  |                  |

图 9 空载损耗正在测量计算页面

图 8 完整的显示了空载试验的所有测试结果: Uo(V)为三相线电压的平均值, Ps(KW)为当前电压下的实测功率, d 为电压波形畸变系数, Po(KW)为校正后的空载损耗, Io%为空载电流百分比。

左上侧为试验电压、电流的向量图,如果接线错误,该页面提示"接线错误,请关机检查";通过调压器缓慢增加试验电压,当Uo(V)等于空载试验的额定电压时,停止升压。移动光标到"锁定"按钮,长按OK键将出现图9正在测量的提示,此时保持调压器不动,当图9中的正在测量的提示消息消失后,当前测试结果已经被锁定,然后"锁定"按钮变为"重测"按钮,此时请迅速操作调压器降压至零位。

在该页面的"保存"把当前的结果保存到随机的存储器上;"打印"则通过打印机打印 当前的测试结果。

注意:升压的过程中,要时刻关注 Uo 与 Io,除避免过压外,更要提防试品异常时 试验电流过大损坏仪器或被试品。

<sup>4)</sup> 在图 8 中按"重测"则将重新对当前变压器进行测试,按"退出"则退回到图 3 系统功

能的主界面。

#### 5、负载试验过程介绍

- 根据变压器类型参考后面对应的接线图进行正确接线,然后接通空负载测试仪的工作电源。
- 2) 在主界面中选择负载试验,则显示负载试验设置界面如下图:

| 负载试验设置  | 型号容            | 量: <u>S0900400</u> |
|---------|----------------|--------------------|
| 变压器类型   | O单相            | ●三相                |
| 测试方法    | ●双表注           | 去。                 |
| 低压侧额定电压 | <u>400.03</u>  | <u>v</u>           |
| 低压侧额定电流 | <u>577.3</u>   | <u>5A</u>          |
| 高压侧额定电压 | <u>35.001</u>  | <u>XV</u>          |
| 高压侧额定电流 | <u>6.600</u> / | A                  |
| 电压互感器变比 | <u>100.00</u>  | <u>)</u>           |
| 电流互感器变比 | <u>8.000</u>   |                    |
| 开始试验    | 退田             | 试验                 |

图 10 负载试验设置页面

该页面保存上次试验时的设置值,检查、修改该页面中的设置值使其与当前试验变压器 一致,尤其要注意检查编号的后5位所代表的容量值、高压侧额定电流、电流互感器变 比等,避免设定值错误或者试验电流超量程。

注: 在我司某些版本的仪器中,为了简化外部的接线,仪器内部已经接成了双表法,此时该界面的测试方法不可选择。

3) 在图 9 中选择"开始试验",进入负载试验测试数据界面:

| <b>∧</b> AB |                 | AB      |        | CB   |        | CA     |
|-------------|-----------------|---------|--------|------|--------|--------|
| $\sim$      | J(V)            | 27      | 9.50   | 279. | . 08   | 279.34 |
|             | Jm(V)           | 27      | 9.57   | 278. | . 79   | 279.09 |
| Б           | [ (A) ]         | 0.      | 9028   | 0.6  | 585    | 0.8411 |
| Uav(V)      | 279.3           | 1       | Io(A   | )    | 0.8    | 3008   |
| Pab(KW)     | 0.060           | 5       | Pbc(   | KW)  | 0.2    | 2333   |
| Ps(KW)      | 0.293           | 38 Zt(Ω | 2) 0.0 | 000  |        |        |
| Pt(W)       | 151.52<br>0.603 |         | UK%    |      | 63.431 |        |
| COSΦ        |                 |         | F(Hz)  |      | 50.    | 00     |

图 11 负载试验测试数据页面

| 双表法负载       |             | 09-02  | -09     | 10:         | 45:33  |        |    |
|-------------|-------------|--------|---------|-------------|--------|--------|----|
|             |             |        |         |             |        |        |    |
| <b>∧</b> AB | <del></del> | AR     | :#ak    | CB -        |        | CA     |    |
| $\sim \sim$ | した (1)      | 更,     | ,咱们     | <u>唐</u> ., | ·      | 279.3  | 4  |
|             | Um(V)       | 27     | 9. 57   | 278.        | 79     | 279. C | 19 |
| CB          | I (A) I     | 0. '   | 9028    | 0.65        | 585    | 0.841  | 1  |
| 11 (12)     |             |        | T (A)   |             |        |        |    |
|             | 279.31      |        | 10 (A)  | )           | 0.8    | 008    |    |
| Pab(KW)     | 0. 0605     | j      | Pbc(KW) | 0.2333      |        |        |    |
| Ps(KW)      | 0.2938      | }      | Zt (S   | })          | 0. 0   | 00     |    |
| Pt(W)       | 151.52      | 151.52 |         | UK%         |        | 431    |    |
| COS Φ       | 0.603       | 0.603  |         | )           | 50.    | 00     |    |
| Exer 24     |             |        |         |             | 1-1-1- | -      |    |
| 锁足          | 」保存         |        | 打印      |             | 退出     |        |    |

图 12 负载损耗正在测量计算页面

图 11 显示负载试验时当前温度下的所有测试数据: Uav(V)为当前三相电压的平均值, Io(A)为三相电流的平均值, Ps(KW)为当前电压下的实测功率, Pt(KW)为当 前温度下校正到额定电流时的复载损耗, Zt(Ω)为当前温度下的短路阻抗, Uk%为当 前温度下的短路电压百分比。

左上侧为试验电压、电流的向量图,如果接线错误,该页面提示"接线错误,请关机检查";通过调压器缓慢增加试验电压,当 Io(A)等于负载试验的试验电流时,停止升压。移动光标到"锁定"按钮,长按 OK 键将出现图 12 正在测量的提示,此时保持调压器不动,当图 12 中的正在测量的提示消息消失后,当前测试结果已经被锁定,然后"锁定"按钮变为"重测"按钮,此时请迅速操作调压器降压至零位。

注意:升压的过程中,要时刻关注 Uav 与 Io,除避免过压外,更要提防试品异常时 试验电流过大损坏仪器或被试品。

4) 在图 10 种选择"温度校正",显示温度校正界面:

| 负载温度校正 |              |        |                 |
|--------|--------------|--------|-----------------|
| 高压侧直阻  | 2.849        | Ω      |                 |
| 低压侧直阻  | 4.178        | mΩ     |                 |
| 测直阻时温度 | <u>10</u> C  |        |                 |
| 试品温度   | <u>10</u> °C | 校正社    | 温度 <u>_75</u> ℃ |
|        |              |        |                 |
|        | Uk(%)        | Zt(Ω)  | Pt(W)           |
| 温度系数法  | 73.581       | 233.59 | 191.71          |
| 国标公式法  | 73.581       | 233.59 | 121.03          |
|        |              |        |                 |
| 田始建    | (A)          | 馆市纬    | <u>1</u> 4-     |

#### 图 13 负载结果温度校正页面

该页面的参数设置值为上次试验的设置值,检查、修改使其与当前被试品一致,本仪器 提供两种温度校正算法:温度系数法和国标公式法,这两种算法的公式见后面附录。 在该页面的"保存"把当前的结果保存到随机的存储器上;"打印"则通过打印机打印 当前的测试结果。

#### 6、谐波试验过程介绍

空载试验时,由于变压器铁芯的厉磁曲线是非线性曲线,通过变压器的空载电流将有一定的谐波分量,谐波分量的多少与试验电源的容量有关。谐波试验即是在做完空载试验或负载试验后,不改变试验接线的情况下,测量此时通过变压器的电压、电流的谐波分量的情况。

 先按前述的过程进行空载试验或负载试验,试验完成后,不改变接线与调压器输出电压, 在系统的主界面上选择谐波试验,将出现下面的谐波分量列表页面:

| 双表         | 法谐波           | 试验          | 09          | -02-09      | 11:2         | 3:33         |
|------------|---------------|-------------|-------------|-------------|--------------|--------------|
| 6 669<br>9 | AB%           | CB%         | CA%         | Ia%         | Ib%          | Ic%          |
| 01         | 100.          | 100.        | 100.        | 100.        | 100.         | 100.         |
| 02         | 0.02          | 0.02        | 0.02        | 0.31        | 0.31         | 0.31         |
| 03         | 0.20          | 0.20        | 0.20        | 5.11        | 5.11         | 5.11         |
| 04         | 0.01          | 0.01        | 0.01        | 0.17        | 0.17         | 0.17         |
| 05         | 0.64          | 0.64        | 0.64        | 7.20        | 7.20         | 7.20         |
| 06         | 0.02          | 0.02        | 0.02        | 0.05        | 0.05         | 0.05         |
| 07         | 1.44          | 1.44        | 1.44        | 1.59        | 1.59         | 1.59         |
| 08         | 0.02          | 0.02        | 0.02        | 0.02        | 0.02         | 0.02         |
| 09         | 0.09          | 0.09        | 0.09        | 0.33        | 0.33         | 0.33         |
| Σ%         | 6 <u>1.77</u> | <u>1.77</u> | <u>1.77</u> | <u>9.02</u> | <u>9. 02</u> | <u>9. 02</u> |

#### 图 14 谐波分量列表页面

列表中的值为各谐波分量相对于基波的百分比,本系统共分析到第 31 次谐波,第一个页面显示 1~9 次谐波的相对值,按"↑""↓"键可以进行上下翻页以显示其他谐波分量的值。

页面最下方一栏显示所有谐波的和相对于基波的百分比。

2) 在图 12 页面中长按 OK 键,出现下面的频谱图页面:

| 双表法谐波试验             | 金 09-02-            | -02-09 11:24:36     |  |
|---------------------|---------------------|---------------------|--|
| Uab(V) <u>279.9</u> | Uca(V) <u>279.6</u> | Ubc(V) <u>279.7</u> |  |
| 991                 | 991                 | 99↑                 |  |
| 02                  | 02                  | 02                  |  |
| م لىللىلىپ          | ہ لیللیا سے         | ہ لیلیلیہ ج         |  |
| Ia(A) <u>0.906</u>  | Ib(A) <u>0.906</u>  | Ic(A) <u>0.906</u>  |  |
| 991                 | 991                 | 99 🛉                |  |
| 10                  | 10                  | 10                  |  |
| ہ لیللیں ہے         | ہ لیالیا سے         | ہ لیلیلیں ہے        |  |
|                     |                     |                     |  |

图 15 谐波分量频谱图页面

# 7、系统设置说明

1) 在主界面中选择"系统设置",择显示下面的界面:

| 系统设置  |        |       |      |
|-------|--------|-------|------|
| 日期:   | 09年 02 | 月 09日 |      |
| 时间:   | 14时 16 | 分 33秒 |      |
| 三表法电  | ,压显示:  | O相电压  | ●线电压 |
| 空载Uo电 | 压显示:   | ●有效值  | O平均值 |
|       |        |       |      |
|       | 确定     | 「取酒」  |      |
|       | 确定     | 取消    |      |

图 16 系统设置界面

2) 在上图中可以修改系统的日期时间;

其中"三表法电压显示"决定着图 8 和图 10 中显示的电压为相电压还是线电压; "空载 Uo 电压显示"决定着图 8 中的空载试验是三相电压平均值 Uo 的意义,根据这 里的选择其是三相有效值 U 的平均值还是三相电压平均值 Um 的平均值。 注:在我司某些版本的仪器中,为了简化外部的接线,仪器内部已经接成了双表法,此 时该界面中没有三表法显示内容的选择。

有些版本的仪器中也没有 Uo 意义的选项,此时 Uo 为三相有效值的平均值。

附录

# 1、试验接线图

#### 1) 三相变压器空载试验接线图



2) 三相变压器负载试验接线图

本测试仪

被试变压器



3) 单相变压器空载试验接线图



4) 单相变压器负载试验接线图



# 2、仪器检定方法

- 1) 所需仪器:误差小于 0.1% 的三相标准源;
- 2) 接线图: 空负载测试仪与标准源的接线图如下:



3) 接通空负载测试仪的电源,进入空载试验的数据页面图 8,检定该页面下的实测电压、 电流以及实测功率 Pm(KW)与标准源的输入值之间的误差。

## 3、显示结果说明及理论计算公式

◆ 负载试验温度换算公式

阻抗电压百分比: 
$$u_{kt}\% = \sqrt{u_k^2 + (\frac{P_k}{10S_n})^2 \times (k_t^2 - 1)} \times 100\%$$

短路阻抗:  $z_t = u_{kt} \times \frac{u_n^2}{s_n}$ 

温度系数法换算公式为:  $P_{kt} = K_t P_k$ 

国标公式法换算公式为: 
$$P_{kt} = \frac{P_k + \sum I_n^2 R_T (K_t^2 - 1)}{K_t}$$

上述公式符号含义:

t 一校正的目标温度, 也即 75 或 120

T一当前环境温度

 $t_R$ 一测量电阻时的温度

 $K_t$ 一当前环境温度换算到 t (75 或 120) 度的温度系数,  $K_t = \frac{235 + t}{235 + T}$  $K_R$ 一将测量电阻时的温度换算到当前环境温度 T 的温度系数,  $K_R = \frac{235 + T}{235 + t_R}$ 

 $U_o$ 一实测三相电压有效值的平均值,  $U_o = (U_{ab} + U_{bc} + U_{ca})/3$ 

 $I_o$ 一实测三相电流有效值的平均值,  $I_o = (I_a + I_b + I_c)/3$ 

 $P'_{k}$ 一实测变压器总损耗功率,两表法 $P'_{k} = P_{ab} + P_{bc}$ ,三表法 $P'_{k} = P_{a} + P_{b} + P_{c}$  $u_{k}$ 一当前温度下阻抗电压百分比, $u_{k} = (U_{a}/U_{n})^{*}(I_{n}/I_{a})$ 

 $P_k$ 一当前温度下,折算到额定电流的总损耗功率, $P_k = P'_k * (I_n / I_o)$ 

U<sub>n</sub>一施加电压测的额定电压,若电压从高压侧施加则为U<sub>n1</sub>,若电压从低压侧施 加则为U<sub>n2</sub>。

 $I_{n}$ 一施加电压侧的额定电流,若电压从高压侧施加则为 $I_{n1}$ ,若电压从低压侧施加则为 $I_{n2}$ 。

S<sub>n</sub>一所测变压器的额定容量(单位为 KVA)。

 $\mathbf{U}_{n1}/U_{n2}$ 一分别表示被测变压器高压侧和低压测的额定电压。

 $I_{n1}/I_{n2}$ 一分别表示被测变压器高压侧和低压测的额定电流。

 $\Sigma I_n^2 R$  ——被测试变压器高、低压侧三相绕线的电阻损耗 (单位: W); "Y" 与"D"

型接法的电阻损耗= $1.5I_n^2 R_x$ 。"Yn"型接法的电阻损耗= $3I_n^2 R_{xn}$ ,其中 $R_x$ ——人

工键入高/低压侧的线电阻,  $R_{xn}$  ——人工键入高/低压侧的相电阻 (x = 1或2)。

 $\Sigma I_n^2 R_T$ ——折算到当前温度的变压器绕线电阻损耗,  $\Sigma I_n^2 R_T = K_R * \Sigma I_n^2 R$ 。

#### 4、常见故障排除

- ◆ 开机无显示: 先关机,打开背板上 AC 220V 插座的保险丝盒,检查保险丝是否烧断, 可更换保险。
- ◆ 屏幕突然黑屏:可按复位键,重新开始测量。
- ◇ 测量及运算结果不正确:检查外部接线,是否按说明书操作,是否有接触不良或接错线; 相关参数设置不正确。
- ◆ 测量电压正常而电流显示为零,请检查该电流档保险管是否熔断。
- ◆ 双表法接线时提示接线错误,请对照说明书仔细检查现场接线,如果确认接线无误,请 调换调压器 A/C 两相再试,以便确定是否现场的三相电源相序错误。
- ◆ 空载试验的结果跳动较大,请注意试验电源需要与车间行吊等大功率冲击型设备所使用 的电源分开。